Magelis XBT-G Uni-Telway driver

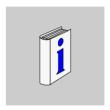

eng

Table of Contents

	About the Book5
Chapter 1	Schneider Electric Uni-Telway Driver7
•	At a Glance
	System Structure 8
	Cable Diagrams
	Supported Equipment Addresses
	Consecutive Equipment Addresses
	Environment Setup
	I/O Manager Configuration
	Driver Configuration
	Equipment Configuration
	Equipment Address Configuration

About the Book

At a Glance

Document Scope

This documentation presents Uni-Telway driver for Magelis XBT-G.

Related Documents

Title of Documentation	Reference Number
Vijeo-Designer Tutorial	VJDUSE00010E

User Comments

We welcome your comments about this document. You can reach us by e-mail at $\mathsf{TECHCOMM}@\mathsf{modicon.com}$

September 2003 5

Schneider Electric Uni-Telway Driver

1

At a Glance

Subject of this chapter

This chapter explains how to connect the target machine with Uni-Telway equipment. For information about how to use the Vijeo-Designer software, please refer to the Vijeo-Designer Online Help.

The types of target machines that are compatible with Vijeo-Designer depends on the version of Vijeo-Designer. For information about the compatibility of target machines, please refer to the Vijeo-Designer Online Help.

Note: target machines mean Magelis XBT-G products.

What's in this Chapter?

This chapter contains the following topics:

Topic	Page
System Structure	8
Cable Diagrams	9
Supported Equipment Addresses	11
Consecutive Equipment Addresses	13
Environment Setup	14
I/O Manager Configuration	15
Driver Configuration	16
Equipment Configuration	18
Equipment Address Configuration	19

September 2003 7

System Structure

Overview

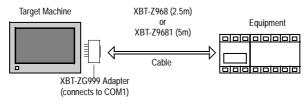
The following table describes the basic system setup for connecting the target machine to Schneider Electric Uni-Telway equipment, for other products refer to their documentation.

To view a cable connection diagram for a particular communication format, see the cable diagram section (See *Cable Diagrams*, *p. 9*).

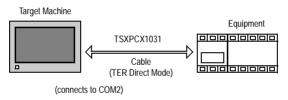
Connection

The following table describes the basic system setup for connecting the target machine to Schneider Electric Uni-Telway equipment

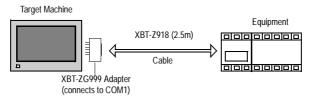
Series	CPU	Link I/F	Comm.Format	Diagram
TSX 07/37/57 Series	TSX 07 Nano	Programmer Port	RS-485	Cable Diagram 1
			RS 232C	Cable Diagram 2
	TSX 37 Micro	TER and AUX Port	RS-485	Cable Diagram 1
			RS 232C	Cable Diagram 2
	TSX 57 Premium	Ter and Aux Port	RS-485	Cable Diagram 1
			RS 232C	Cable Diagram 2
		TSX SCY21601 (PCMCIA Link Module)	RS-485	Cable Diagram 3
	Uni-Telway Bus	TSX SCA 62 (Subscriber Socket)	RS-485	Cable Diagram 4


Cable Diagrams

Overview


Schneider Electric recommends using the following diagrammed connections.

• Ground the equipment FG terminal according to your country's applicable standard. For details, refer to the equipment manual.


Diagram 1 RS 485

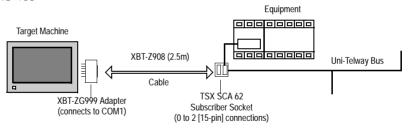

Diagram 2 RS 232C

Diagram 3 RS 485

Diagram 4 RS 485

Supported Equipment Addresses

Overview

The following table lists the equipment address ranges of the Schneider Electric Uni-Telway equipment you can specify in the driver user interface. For actual address ranges supported by the equipment, refer to the corresponding manual. Supported addresses differ from one equipment model to another.

Equipment address range

The following table lists the address range of Schneider Electric equipment.

Equipment	Bit Address (1)	Word Address	16-Bit	32-Bit
Internal Word	%MW00000:X - %MW65535:X15 (1)	%MW00000 - %MW65535 (2)	L/H (5)	L/H (5)
Internal Double Word (3)	-	%MD00000 - %MD32767		
Internal Float (3)	-	%MF00000 - %MF32767		
Constant Word (4)	%KW00000:X0 - %KW65535:X15	%KW0000 - %KW65535 (2)		
System Word	%SW000:X0 - %SW999:X15 (1)	%SW000 - %SW999		
Internal Bit	%M0000 - %M9999			
System Bit	%S000-%S999			

Note:

- (1): Read/Write. When you write to one of these bit addresses, the target machine reads the entire word address, sets the defined bit, then returns the new word address to the equipment. If the ladder program writes data to this word address during the bit read/write process, the resulting data may be incrorrect
- (2): You can define a bit address by adding a colon and the bit indicator (X00~X15) at the end of the word. (e.g. %MW00100:X08)
- (3): When using a 32-bit value (%MD or %MF), set up the variable in Vijeo-Designer with a Data Length of 32-bit; otherwise, the variable views the equipment address as a 16-bit word.
- (4): Read-only
- (5): 16-bit and 32-bit data, High and Low, refer to data as defined in the following examples

16/32 bit examples

The word (16-bit) is managed as follows:

- least significant = byte n
- most significant = byte n + 1

(Check that the connected equipment uses the same format).

The double word and floating point word (32-bit) are managed as follows:

- least significant = word n
- most significant = word n + 1

(Check that the connected equipment uses the same format.) 16-bit and 32-bit data. High and Low example.

Byte		16 bit			Word		32 bit		
0	7		0	L (Low)	0	15		0	L (Low)
1	15		8	H (High)	1	31		16	H (High)

Note: In case of different format between target machine and the equipment, use intermediate variable (which will be used in target machine) for which most significant byte/word and most significant byte/word are inverted.

Consecutive Equipment Addresses

Overview

The following table lists the maximum number of consecutive addresses that can be read for each equipment model. Refer to this table when using block transfers. When two variable address on the same equipment are closer than the Gap Span value, they are read in the same request. In other cases, they are read in two distinct requests.

- To speed up data communication, use consecutive variable addresses on the same panel screen.
- The following situations increase the number of times that the equipment is read, and reduces the data communication speed between the target machine and the equipment:
 - when the number of consecutive addresses exceeds the maximum
 - when an address is designated for division
 - when different equipment types are used.

Consecutives addresses

The following table lists the maximum number of consecutive addresses that can be read for each equipment.

Equipment	Max. consecutive addresses	Gap Span
Internal Bit (%Mi)	8 bits	8 bits
System Bit (%Si)		
Internal Word (%MWi)	32 words	10 words
Constant Word (%KWi)		
System Word (%SWi)		
Internal double word (%MDi)	16 double words	5 double words
Internal Float (%MFi)		

Environment Setup

Overview

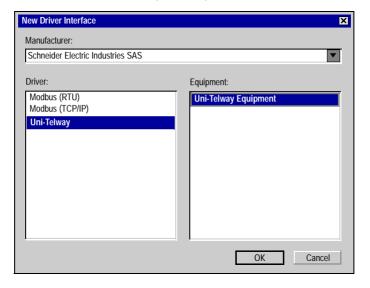
The following table lists the communication settings, recommended by Schneider Electric, for the target machine and Schneider Electric Uni-Telway equipment. For details, see Section 7 (See *Driver Configuration*, *p. 16*) and Section 8 (See *Equipment Configuration*, *p. 18*).

RS-485 settings

RS-485 setup.

Target Machine			Equipment Sett	tings
Driver	Serial Interface	RS-485	Conn. Format	RS-485
	Flow Control	None		
	Transmission Speed	19200 (1)	Baud Rate	19200
	Retry Count	0		
	Parity Bit	Odd	Parity Bit	Odd
	Stop Bit	1 bit	Stop Bit	1 bit
	Data Length	8 bits	Data Length	8 bits
	Rcv. Timeout	10 sec		
	TX Wait Time	0 msec		
Protocol	Address (SLAVE ID)	4		
	•			
Note:				
(1): Set 9600bp	s for the TSX 07 Nar	no PLC		

I/O Manager Configuration


Overview

The driver and equipment, which enable communication between the target machine and the equipment, depends on the equipment type.

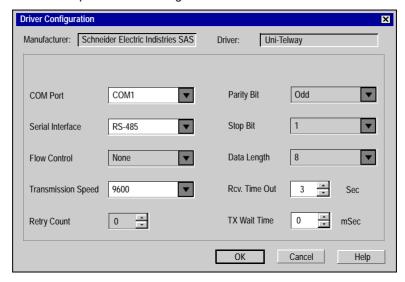
Note: For information on how to display the **New Driver Interface** dialog box, or for details about the I/O Manager, see the online help: Communication -> External I/O -> Setup I/O.

Screen example

Screen example of I/O Manager Configuration.

September 2003 15

Driver Configuration


Overview

To configure the communication settings of the serial driver in the target machine, use the **Driver Configuration** dialog box. Make sure the settings match those of the equipment. For an overview of the driver and protocol settings, see Section 5 (See *Environment Setup, p. 14*).

Note: For information on how to display the **Driver Configuration** dialog box, see the online help: Communication -> External I/O -> Drivers -> Overview.

Screen example

Screen example of Driver Configuration.

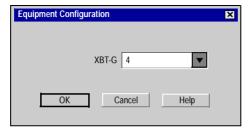
Description

Screen description.

Area	Description
Manufacturer	Displays the name of the equipment manufacturer.
Driver	Displays the driver used to connect the target machine to the equipment.
COM Port	Defines which COM port to use on the target machine, for connecting to the equipment.
Serial Interface	Defines the serial connection: RS-232C or RS-485 for COM1, or RS-232C (fixed) for COM2. For details about the supported connections, see Section 2 (See <i>Cable Diagrams</i> , p. 9).
Flow Control	Set to None , the driver handles flow control internally.
Transmission Speed	Sets the communication speed in bits per second. This setting must match the equipment baud rate.
Retry Count	Number is set to 0 , The driver does not retry sending or receiving data when an error occurs.
Parity Bit	Set to [Odd] parity.
Stop Bit	Set to 1, defines the stop bit as 1 bit.
Data Length	Set to 8, defines the length of each unit of data as 8 bits.
Rcv. Timeout	Defines the number of seconds the target machine waits for a response before it outputs a timeout error or sends another communication.
TX Wait Time	Defines the number of milliseconds that the target machine waits, after receiving a communication packet, before sending a response.

Equipment Configuration

Overview


To set up details about the communication process between the target machine and the equipment, use the **Equipment Configuration** dialog box.

For an overview of the driver and equipment settings, see Section 5 (See Environment Setup, p. 14).

Note: For information on how to display the **Equipment Configuration** dialog box, see the online help: Communication -> Externel I/O -> Equipment -> Overview.

Screen example

Screen example of Equipment Configuration.

Description

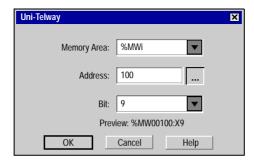
Screen description.

Area	Description
XBT-G	Enter a value to identify the target machine. (1-253).

Note:

- Up to 32 slaves can be connected to the equipment at the same time
- Slave ID numbers 1 to 3 are reserved for the Programming unit to program the equipment.

Equipment Address Configuration


Overview

To define an equipment address for a variable in the Variable List, use the Equipment Address Keypad from the variable properties, see Section 3 (See Supported Equipment Addresses, p. 11).

Note: To display the Equipment Address Keypad, click on the [...] button.

Screen example

Screen example of Equipment Address Configuration.

Description

Screen description.

Area	Description			
Memory Area	Lists the equipment's discrete and word memory areas.			
Address	Enter the memory area address for the equipment variable. Click the ellipsis to display the [Address Selector] keypad, which ensures you type the correct value: Address Selector To Clear To B 9 E F 4 5 6 C D 1 2 3 A B 0 : Del BackSpace			
	OK Cancel			
Bit	When defining a bit address in a word memory area, select the bit position (0-15).			